Search results for "Maximal function"

showing 10 items of 19 documents

The Variation of the Fractional Maximal Function of a Radial Function

2017

Abstract In this article, we study the regularity of the non-centered fractional maximal operator $M_{\beta}$. As the main result, we prove that there exists $C(n,\beta)$ such that if $q=n/(n-\beta)$ and $f$ is radial function, then $\|DM_{\beta}f\|_{L^{q}({\mathbb{R}^n})}\leq C(n,\beta)\|Df\|_{L^{1}({\mathbb{R}^n})}$. The corresponding result was previously known only if $n=1$ or $\beta=0$. Our proofs are almost free from one-dimensional arguments. Therefore, we believe that the new approach may be very useful when trying to extend the result for all $f\in W^{1,1}({\mathbb{R}^n})$.

CombinatoricsRadial functionGeneral Mathematics010102 general mathematicsMaximal operatorBeta (velocity)Maximal function0101 mathematics01 natural sciencesMathematicsInternational Mathematics Research Notices
researchProduct

Maximal function estimates and self-improvement results for Poincaré inequalities

2018

Our main result is an estimate for a sharp maximal function, which implies a Keith–Zhong type self-improvement property of Poincaré inequalities related to differentiable structures on metric measure spaces. As an application, we give structure independent representation for Sobolev norms and universality results for Sobolev spaces. peerReviewed

Discrete mathematicsPure mathematicsGeneral Mathematics010102 general mathematicsAlgebraic geometryharmoninen analyysi01 natural sciencesUniversality (dynamical systems)Sobolev inequalitySobolev spacesymbols.namesakeNumber theoryinequalities0103 physical sciencesPoincaré conjecturesymbolsharmonic analysisMaximal function010307 mathematical physicsDifferentiable function0101 mathematicsfunktionaalianalyysiepäyhtälötMathematics
researchProduct

Weighted norm inequalities in a bounded domain by the sparse domination method

2019

AbstractWe prove a local two-weight Poincaré inequality for cubes using the sparse domination method that has been influential in harmonic analysis. The proof involves a localized version of the Fefferman–Stein inequality for the sharp maximal function. By establishing a local-to-global result in a bounded domain satisfying a Boman chain condition, we show a two-weight p-Poincaré inequality in such domains. As an application we show that certain nonnegative supersolutions of the p-Laplace equation and distance weights are p-admissible in a bounded domain, in the sense that they support versions of the p-Poincaré inequality.

Discrete mathematicsosittaisdifferentiaaliyhtälötInequalityGeneral Mathematicsmedia_common.quotation_subject010102 general mathematicsPoincaré inequalityharmoninen analyysi01 natural sciences35A23 (Primary) 42B25 42B37 (Secondary)Harmonic analysis010104 statistics & probabilitysymbols.namesakeMathematics - Analysis of PDEsNorm (mathematics)Bounded functionFOS: MathematicssymbolsMaximal function0101 mathematicsepäyhtälötAnalysis of PDEs (math.AP)Mathematicsmedia_common
researchProduct

The variation of the maximal function of a radial function

2017

We study the problem concerning the variation of the Hardy-Littlewood maximal function in higher dimensions. As the main result, we prove that the variation of the non-centered Hardy-Littlewood maximal function of a radial function is comparable to the variation of the function itself.

Mathematics::Functional Analysis42B25 46E35 26A45maximal functionGeneral Mathematicsta111010102 general mathematicsMathematics::Classical Analysis and ODEsradial functionharmoninen analyysi01 natural sciences010101 applied mathematicsCombinatoricsRadial functionMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Maximal operatorMaximal function0101 mathematicsfunktionaalianalyysi42B25Variation (astronomy)26A45MathematicsArkiv för Matematik
researchProduct

Ein Kriterium f�r die Approximierbarkeit von Funktionen aus sobolewschen R�umen durch glatte Funktionen

1981

The present paper provides a necessary and sufficient criterion for an element of a Sobolev space W k p (Ω) to be approximated in the Sobolev norm by Ck(En)-smooth functions. Here Ω is a bounded open set of n-dimensional Euclidean space En with convex closure $$\bar \Omega$$ and boundary ∂Ω having n-dimensional Lebesgue measure zero. No further boundary regularity (such as e.g. the segment property) is required.Our main tools are the Hardy-Littlewood maximal functions and a slightly strengthened version of a well-known extension theorem of Whitney.This work was inspired by and is very close in spirit to the pertinent parts of Calderon-Zygmund [6].

Mathematics::Functional AnalysisPure mathematicsLebesgue measureEuclidean spaceGeneral MathematicsMathematical analysisMathematics::Classical Analysis and ODEsOpen setSobolev spaceNorm (mathematics)Bounded functionMaximal functionMathematicsTrace operatorManuscripta Mathematica
researchProduct

Smoothing properties of the discrete fractional maximal operator on Besov and Triebel-Lizorkin spaces

2013

Motivated by the results of Korry, and Kinnunen and Saksman, we study the behaviour of the discrete fractional maximal operator on fractional Hajlasz spaces, Hajlasz-Besov, and Hajlasz-Triebel-Lizorkin spaces on metric measure spaces. We show that the discrete fractional maximal operator maps these spaces to the spaces of the same type with higher smoothness. Our results extend and unify aforementioned results. We present our results in a general setting, but they are new already in the Euclidean case.

Pure mathematicsGeneral MathematicsMetric measure spaceSpace (mathematics)Triebel–Lizorkin spaceMeasure (mathematics)Triebel-Lizorkin spaceFOS: Mathematics46E35Birnbaum–Orlicz spaceLp spaceBesov spacefractional Sobolev spaceMathematicsMathematics::Functional Analysista111Mathematical analysisFractional Sobolev spaceFunctional Analysis (math.FA)Fractional calculusMathematics - Functional Analysismetric measure space42B25 46E35fractional maximal functionBesov spaceInterpolation spaceFractional maximal function42B25
researchProduct

Self-improvement of pointwise Hardy inequality

2019

We prove the self-improvement of a pointwise p p -Hardy inequality. The proof relies on maximal function techniques and a characterization of the inequality by curves.

Pure mathematicsInequalityGeneral Mathematicsmedia_common.quotation_subjectCharacterization (mathematics)Mathematics - Analysis of PDEsuniform fatnessClassical Analysis and ODEs (math.CA)FOS: Mathematicsepäyhtälötpointwise Hardy inequalitymedia_commonMathematicsPointwiseosittaisdifferentiaaliyhtälötSelf improvementApplied Mathematicsmetric spacemetriset avaruudetMetric spaceMathematics - Classical Analysis and ODEsself-improvementMaximal functionpotentiaaliteoria31C15 (Primary) 31E05 35A23 (Secondary)Analysis of PDEs (math.AP)
researchProduct

A maximal Function Approach to Two-Measure Poincaré Inequalities

2018

This paper extends the self-improvement result of Keith and Zhong in  Keith and Zhong (Ann. Math. 167(2):575–599, 2008) to the two-measure case. Our main result shows that a two-measure (p, p)-Poincare inequality for $$10$$ under a balance condition on the measures. The corresponding result for a maximal Poincare inequality is also considered. In this case the left-hand side in the Poincare inequality is replaced with an integral of a sharp maximal function and the results hold without a balance condition. Moreover, validity of maximal Poincare inequalities is used to characterize the self-improvement of two-measure Poincare inequalities. Examples are constructed to illustrate the role of t…

Pure mathematicsSelf improvementInequalitymedia_common.quotation_subject010102 general mathematicsPoincaré inequality01 natural sciencesMeasure (mathematics)symbols.namesakeDifferential geometryPoincaré inequality0103 physical sciencesPoincaré conjectureself-improvementsymbolsMaximal functionpotentiaaliteoria010307 mathematical physicsGeometry and Topology0101 mathematicsfunktionaalianalyysiepäyhtälötgeodesic two-measure spaceMathematicsmedia_common
researchProduct

Functions of One Variable

2019

A classical result of Fatou gives that every bounded holomorphic function on the disc has radial limits for almost every point in the torus, and the limit function belongs to the Hardy space H_\infty of the torus. This property is no longer true when we consider vector-valued functions. The Banach spaces X for which this property is satisfied are said to have the analytic Radon-Nikodym property (ARNP). Some important equivalent reformulations of ARNP are studied in this chapter. Among others, X has ARNP if and only if each X-valued H_p- function f on the disc has radial limits almost everywhere on the torus (and not only H_\infty-functions). Even more, in this case each such f has non-tange…

Pure mathematicssymbols.namesakeSubharmonic functionBounded functionBanach spaceHolomorphic functionsymbolsAlmost everywhereTorusHardy–Littlewood maximal functionHardy spaceMathematics
researchProduct

On the regularity of the Hardy-Littlewood maximal operator on subdomains of ℝn

2010

AbstractWe establish the continuity of the Hardy-Littlewood maximal operator on W1,p(Ω), where Ω ⊂ ℝn is an arbitrary subdomain and 1 < p < ∞. Moreover, boundedness and continuity of the same operator is proved on the Triebel-Lizorkin spaces Fps,q (Ω) for 1 < p,q < ∞ and 0 < s < 1.

Sobolev spaceDiscrete mathematicsPure mathematicsGeneral MathematicsOperator (physics)Maximal operatorMaximal functionMathematicsProceedings of the Edinburgh Mathematical Society
researchProduct